Skip to content

pythonla metin şeklindeki zaman bilgisini ayrıştırmak

dateparser, datefinder gibi bir modul kullanma imkanınız yoksa metin şeklinde yazılmış bir zaman verisini nasıl işleyebiliriz basit bir örnek yapalım.

3 yıl 4 ay 5 gün 10 dakika şeklinde yazılmış bir zaman verisinin kaç dakika olduğunu hesaplayalım.

öncelikle uygun bir regex oluşturalım. daha optimize şekilde yazılabilir ancak ben aşagıdaki yapıyı kullanacağım.

desenler = {
    'YIL': re.compile(r'(\d+)\s*[Yy][İiIi][Ll]', re.I),
    'AY': re.compile(r'(\d+)\s*[Aa][Yy]', re.I),
    'HAFTA': re.compile(r'(\d+)\s*[Hh][Aa][Ff][Tt][Aa]', re.I),
    'GUN': re.compile(r'(\d+)\s*[Gg][ÜuUu][Nn]', re.I),
    'SAAT': re.compile(r'(\d+)\s*[Ss][Aa][Aa][Tt]', re.I),
    'DAKIKA': re.compile(r'(\d+)\s*[Dd][Aa][Kk][İiIi][Kk][Aa]', re.I),
    'SANIYE': re.compile(r'(\d+)\s*[Ss][Aa][Nn][İiIi][Yy][Ee]', re.I)
}

şimdide dakika dönüşü için gerekli hesaplamayı yapacağız listeyi oluşturalım.

dakika_donusturme = {
    'YIL': 365 * 24 * 60,
    'AY': 30 * 24 * 60,
    'HAFTA': 7 * 24 * 60,
    'GUN': 24 * 60,
    'SAAT': 60,
    'DAKIKA': 1,
    'SANIYE': 1 / 60
}

sırada ise metin bilgisini oluşturacak fonksiyonu yazalım.

def metin_ifadesinden_dakika_hesapla(metin_ifadesi):
    if not isinstance(metin_ifadesi, str)  or metin_ifadesi == "":      
        return None
    
    zaman_birimleri = {}

    for birim, desen in desenler.items():
        eslesme = desen.search(metin_ifadesi)
        zaman_birimleri[birim] = int(eslesme.group(1)) if eslesme else 0

    toplam_dakika = sum(zaman_birimleri[birim] * dakika_donusturme[birim] for birim in zaman_birimleri)

    return int(toplam_dakika)

kodumuzu çalıştırdığımız zaman

"3 yıl 4 ay 5 gün 10 dakika" zaman verisi toplam 1756810 dakikadır

çıktısını elde ederiz.

python’da büyük veri kümelerinde ortalama değer hesaplama

ortalama değer bir veri kümesindeki sayıların toplamının eleman sayısına bölümü olarak hesaplanır.

bunu yapacak bir fonksiyon yazalım.

def ortalama_bul(veri_kumesi):
    toplam = sum(veri_kumesi)
    eleman_sayisi = len(veri_kumesi)
    ortalama = toplam / eleman_sayisi
    return ortalama

bu yöntem düşük boyutlu veri kümeleri ile çalışırken yeterli olacaktır ancak veri kümesi büyüdükçe dahah hızlı bir yöntem gerekecektir. bu durumu yapacağımız örnekle inceleyelim.

numpy ile belirli boyutta bir veri kümeisi oluşturalım. yazdığımız fonkisyon ve alternatif olarak numpy nin mean metodu ile ortalama değeri hesaplamasını yapabilecek bir kod yazalım. hesaplamanın ne kadar sürede yapıldığını öğrenmek adına basit bir time yöntemi eklemeyi unutmayalım.

import numpy as np
import time

# Veri kümesinin ortalamasını bulan fonksiyon
def ortalama_bul(veri_kumesi):
    toplam = sum(veri_kumesi)
    eleman_sayisi = len(veri_kumesi)
    ortalama = toplam / eleman_sayisi
    return ortalama

# veri kümesi oluştur
veri_kumesi = np.random.rand(10000)

# numpy ile ortalama bulma
np_baslangic_zamani = time.time()
np_ortalama = np.mean(veri_kumesi)
np_bitis_zamani = time.time()
print(f"Numpy ile Ortalama hesaplama süresi: {np_bitis_zamani - np_baslangic_zamani} saniye")
print(f"Numpy ile Veri kümesinin ortalaması: {np_ortalama}")


# ortalama_bul fonksiyonunu kullanarak ortalama bulma
fonk_baslangic_zamani = time.time()
fonk_ortalama = ortalama_bul(veri_kumesi)
fonk_bitis_zamani = time.time()
print(f"Fonksiyon Ortalama hesaplama süresi: {fonk_bitis_zamani - fonk_baslangic_zamani} saniye")
print(f"Fonksiyon ile Veri kümesinin ortalaması: {fonk_ortalama}")

yukarıdaki kodda 10.000 adet veri için ortalama hesapları yapılmaktadır. kodu çalıştırdığımda elde ettiğim sonuç aşagıdaki gibidir.

Numpy ile Ortalama hesaplama süresi: 0.0 saniye
Numpy ile Veri kümesinin ortalaması: 0.5017341979294518
Fonksiyon Ortalama hesaplama süresi: 0.0 saniye
Fonksiyon ile Veri kümesinin ortalaması: 0.5017341979294502

veri boytunu katlayarak sonuçları kıyaslayalım. 100.000 değer için.

Numpy ile Ortalama hesaplama süresi: 0.0 saniye
Numpy ile Veri kümesinin ortalaması: 0.5008137222243555
Fonksiyon Ortalama hesaplama süresi: 0.0 saniye
Fonksiyon ile Veri kümesinin ortalaması: 0.5008137222243564

1.000.000 değer için

Numpy ile Ortalama hesaplama süresi: 0.0 saniye
Numpy ile Veri kümesinin ortalaması: 0.5000936635960163
Fonksiyon Ortalama hesaplama süresi: 0.046967267990112305 saniye
Fonksiyon ile Veri kümesinin ortalaması: 0.5000936635960234

hesaplamalarda ufak farklar görülmeye başladı. 10.000.000 için

Numpy ile Ortalama hesaplama süresi: 0.014102935791015625 saniye
Numpy ile Veri kümesinin ortalaması: 0.5002303952512933
Fonksiyon Ortalama hesaplama süresi: 0.5047390460968018 saniye
Fonksiyon ile Veri kümesinin ortalaması: 0.5002303952512889

aradaki fark artıyor. verimizi arttırmaya devam. 100.000.000 için

Numpy ile Ortalama hesaplama süresi: 0.09502911567687988 saniye
Numpy ile Veri kümesinin ortalaması: 0.49998983843975686
Fonksiyon Ortalama hesaplama süresi: 5.2369115352630615 saniye
Fonksiyon ile Veri kümesinin ortalaması: 0.4999898384397282

olarak bir çıktı elde ediyoruz. artık hesaplama süresini hissetmeye başladık. durmak yok veriyi büyütmeye devam

Traceback (most recent call last):
  File "D:\python\ortalama.py", line 13, in <module>
    veri_kumesi = np.random.rand(1000000000)
  File "numpy\\random\\mtrand.pyx", line 1218, in numpy.random.mtrand.RandomState.rand
  File "numpy\\random\\mtrand.pyx", line 436, in numpy.random.mtrand.RandomState.random_sample
  File "_common.pyx", line 307, in numpy.random._common.double_fill
numpy.core._exceptions._ArrayMemoryError: Unable to allocate 7.45 GiB for an array with shape (1000000000,) and data type float64

1 Milyar için hesaplama yapmak istediğimde ise numpy için kırılma noktasına gelmiş olduğumuz görüyoruz. numpy ile devam etmek istiyorsak veri kümesini bölerek işlem yapmalıyız. buna uygun basit bir kod yazalım.

import numpy as np
import time

# Veri kümesinin boyutu ve parça boyutu
veri_boyutu = 1000000000
parca_boyutu = 100000

# Ortalamaları saklamak için bir liste oluştur
ortalama_listesi = []

np_baslangic_zamani = time.time()

# Veri kümesini parçalara böl ve her parçanın ortalamasını hesapla
for _ in range(veri_boyutu // parca_boyutu):
    veri_kumesi = np.random.rand(parca_boyutu)
    ortalama = np.mean(veri_kumesi)
    ortalama_listesi.append(ortalama)

# Tüm parçaların ortalamasını hesapla
genel_ortalama = np.mean(ortalama_listesi)
np_bitis_zamani = time.time()

print(f"Veri kümesinin genel ortalaması: {genel_ortalama}")
print(f"Ortalama hesaplama süresi: {np_bitis_zamani - np_baslangic_zamani} saniye")

bu kod içinde parca_boyutu artııkça toplam hesaplama süresinin uzadığı görülmektedir.

işleri daha karmaşık hale getirmek istemiyorsak dask modulünü kullanmak farklı çözüm olacaktır.

import dask.array as da
import dask
import time

dask_baslangic_zamani = time.time()

# örnek veri kümesi oluştur
veri_kumesi = da.random.random(size=(1000000000,), chunks=1000000)

# Ortalama hesaplama
ortalama = da.mean(veri_kumesi)

# Dask hesaplamasını başlatma
with dask.config.set(scheduler='threads'):
    sonuc = ortalama.compute()

dask_bitis_zamani = time.time()

# Hesaplanan ortalama değeri ekrana yazdırma
print(f"Veri kümesinin ortalaması: {sonuc}")
print(f"Dask ile Ortalama hesaplama süresi: {dask_bitis_zamani - dask_baslangic_zamani} saniye")

dask ile çalışırkenden chunks değeri hesaplama sürenizi eklieyecektir. 1 milyar değer için 100 bin değeri bende en optimal sonucu veriyor.

1 milyar veri için dask ve numpy de en optimal parametreler ile elde edilen sonuçlar aşagıdaki gibi çıkmakta…

dasknumpy
1 milyar veri1 milyar veri
2.631504535675049 saniye5.981382369995117 saniye

buradaki kodlar en optimal kodlar olmayabilir ve daha hızlı yöntemler oluşturulabilir. ancak bu haliyle kişisel bigisayarımda 1 milyar ve üzeri veriler için dask kullanmak çok daha mantıklı geliyor.

hareketli ortalama ve standart sapma ile anomali tespiti örneği

bir zaman serisinde anormal noktaların tespitinde kullanılabilecek yöntemlerden bir tanesi hareketli ortalama ve standart sapma kullanmaktadır. basit bir python uygulaması yapalım…

çıktıdan görüleceği gibi doğruluk oranı tüm uygulamalar için işe yaramayabilir. anomali tespiti giriş seviye uygulamalarda kullanılabilir.

python kodlarını çalıştırılabilir (.exe) dosya yapmak

pythonda çalışmanın dezavantajlarından bir tanesi yazdığınız kodları işletim sisteminde çalıştırabilir dosya haline getirme konusudur. çok fazla tercih etmesemde bazen gerekebiliyor.. bu noktada birden fazla seçenek mevcut ancak genel olarak en popüler olanları kullanmak daha fazla kütüphane v.b. konuda soun yaşamamanızı sağlıyor.

pyinstaller seçeneklerin en popüleri diye biliriz. tabiki ilk önce kurmamız gerekiyor.

pip install pyinstaller

kurulumu tamamladıktan sonra kullanımı oldukça kolay. komut yorumluyacısında ihtiyacımız olan parametreleri girerek exe dosyasını oluşturuyoruz.

pyinstaller --onefile dosyaadi.py

komut tamamlandığından python dosyasının bulunduğu klasör içine dist ve build isimli iki yeni klasör oluştuğunu göreceksiniz. dist klasöründen exe dosyanız build klasöründen ise exe oluşturma sürecinde kullanılan dosyalar yer almaktadır.

yukarıdaki komut yapısını kullandığınızda yazdığınız kod ihtiyaç duyulan tüm sistem dosyalarını tek bir dosya içine dahil etmektedir. bu nedenden dolayı dist klasöründeki exe dosyasına incelediğinizde yazdığımız üç beş satır koda karşı oldukça büyük boyutlu olduğunuz göreceksiniz.

eğer gui şeklinde bir uygulama yaptızsanız programı çalıştırdığınız ilave bir console pencesi açılmaması adına noconsole parametresinin eklenmesi gerekmektedir.

pyinstaller --onefile --noconsole dosyaadi.py

oluşturlan dosyanın iconunu değiştirme gibi bir çok seçenek için https://pyinstaller.org/ adresi incelemenizi öneririm.

pythonda dosya içeriği karşılaştırma

iki text dosya içeriği arasındaki farkları bulmak için temel olarak dosyaları satır satır olarak okuyup satıları karşılaştırmak gerekmektedir. bu işlemi kod olarak basitleştirme adına python kullanabilieceğiniz bir çok kütüphane bulunmaktadır. bunlardan en kullanışlarıdan bir tanesi difflib dir.

aşagıdaki örnekte importlardan sonra dosyaların içeriğindeki satırları bir diziye atadıktan sonra difflib de dizi girişlerini ve istediğimiz çıktıyı tanımlarıyoruz..

import difflib
from pathlib import Path

first_file_lines = Path('fileA.txt').read_text().splitlines()
second_file_lines = Path('fileB.txt').read_text().splitlines()

html_out = difflib.HtmlDiff().make_file(first_file_lines, second_file_lines)
Path('diff_output.html').write_text(html_out)
fileA.txtfileB.txt
first_file_lines = Path(‘fileA.txt’)
second_file_lines = Path(‘fileB.txt’)
first_file_lines = Path(‘fileA.txt’)
second_file_lines = Path(‘file2.txt’).read_text()

diff_output.html aşagıdaki şekilde görülecektir.

python örnekleri : hafıza kullanım bilgileri

Python’da kullanılabilir hafıza bilgisini öğrenmek için psutil adlı bir modül kullanabilirsiniz. Bu modül, sistem hafıza bilgisi gibi çeşitli sistem verilerine erişmenize izin verir. Örnek olarak, aşağıdaki kod parçacığı hafıza kullanım bilgisini gösterir:

import psutil

memory = psutil.virtual_memory()

print(f"Hafıza kullanım oranı: {memory.percent}%")

print(f"Kullanılabilir hafıza: {memory.available // (1024 ** 2)} MB")

Bu kod, hafıza kullanım oranını yüzdesini ve kullanabilir hafızayı MB cinsinden ekrana yazdıracaktır. psutil modülünü kullanmadan önce sisteminize yüklemeniz gerekebilir. Bunun için aşağıdaki komutu kullanabilirsiniz:

pip install psutil

python örnekleri : cpu sayısı

Python’da bir sistemdeki CPU sayısını öğrenmek için multiprocessing modülünü kullanabilirsiniz. Örnek kod aşağıdaki gibidir:

import multiprocessing

# Sistemdeki CPU sayısını alın
cpu_count = multiprocessing.cpu_count()

print(f"CPU sayısı: {cpu_count}")

pip 3 de kurulum sırasında –no-warn-script-location uyarısı

linuxde pip ile paket yüklemek istediğinizde aşagıdaki hatayı alırsanız

  WARNING: The script flask is installed in '/home/<username>/.local/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.

kabuk yorumlayıcı olarak bash kullandığınızı düşünerek

vi ~/.bashrc

ile bash konfigürasyon dosyasını açarak dosya içerisine

export PATH=$PATH:/home/$USER/.local/bin

satırını eklemek çözüm olacaktır.

python – faktoriyel hesabı

programlama dilleri ögrenilirken en fazla yapılan matematiksel işlemlerden bir tanesidir faktoriyel hesabıdır

n! = n * (n-1)!

faktoriyel formülü

def faktoriyel(n):
  if(n==1):
    return n
  else:
    return n*(faktoriyel(n-1))

sayi = int(input("Faktoriyel Hesabı Yapılacak Sayı : "))

if sayi < 0:
  print("Negagif Sayı girişi yaptınız")
elif sayi == 0:
  print("Faktoriyel : 1")
else:
  print("Faktoriyel : ",faktoriyel(sayi ))
Back To Top